.. DO NOT EDIT. .. THIS FILE WAS AUTOMATICALLY GENERATED BY SPHINX-GALLERY. .. TO MAKE CHANGES, EDIT THE SOURCE PYTHON FILE: .. "auto_examples\1_train\plot_1_hpo_grid.py" .. LINE NUMBERS ARE GIVEN BELOW. .. only:: html .. note:: :class: sphx-glr-download-link-note :ref:`Go to the end ` to download the full example code or to run this example in your browser via Binder .. rst-class:: sphx-glr-example-title .. _sphx_glr_auto_examples_1_train_plot_1_hpo_grid.py: HPO - Grid Search ========================================= .. GENERATED FROM PYTHON SOURCE LINES 7-8 Experiment initialization and data preparation .. GENERATED FROM PYTHON SOURCE LINES 8-16 .. code-block:: default from piml import Experiment from piml.models import XGB2Regressor exp = Experiment() exp.data_loader(data="BikeSharing", silent=True) exp.data_summary(feature_exclude=["yr", "mnth", "temp"], silent=True) exp.data_prepare(target="cnt", task_type="regression", silent=True) .. GENERATED FROM PYTHON SOURCE LINES 17-18 Train Model .. GENERATED FROM PYTHON SOURCE LINES 18-20 .. code-block:: default exp.model_train(model=XGB2Regressor(), name="XGB2") .. GENERATED FROM PYTHON SOURCE LINES 21-22 Define hyperparameter search space for grid search .. GENERATED FROM PYTHON SOURCE LINES 22-28 .. code-block:: default parameters = {'n_estimators': [100, 300, 500], 'eta': [0.1, 0.3, 0.5], 'reg_lambda': [0.0, 0.5, 1.0], 'reg_alpha': [0.0, 0.5, 1.0] } .. GENERATED FROM PYTHON SOURCE LINES 29-30 Tune hyperparameters of registered models .. GENERATED FROM PYTHON SOURCE LINES 30-33 .. code-block:: default result = exp.model_tune("XGB2", method="grid", parameters=parameters, metric=['MSE', 'MAE'], test_ratio=0.2) result.data .. raw:: html
Rank(by MSE) MSE MAE time
params
{'eta': 0.5, 'n_estimators': 500, 'reg_alpha': 0.5, 'reg_lambda': 0.0} 1 0.006082 0.055082 3.674156
{'eta': 0.5, 'n_estimators': 500, 'reg_alpha': 0.5, 'reg_lambda': 1.0} 2 0.006267 0.055823 3.981528
{'eta': 0.5, 'n_estimators': 500, 'reg_alpha': 0.5, 'reg_lambda': 0.5} 3 0.006328 0.056353 3.933432
{'eta': 0.5, 'n_estimators': 500, 'reg_alpha': 0.0, 'reg_lambda': 1.0} 4 0.006331 0.056674 3.523289
{'eta': 0.5, 'n_estimators': 500, 'reg_alpha': 0.0, 'reg_lambda': 0.0} 5 0.006416 0.056506 4.211272
... ... ... ... ...
{'eta': 0.1, 'n_estimators': 100, 'reg_alpha': 0.5, 'reg_lambda': 0.0} 77 0.011644 0.074410 0.522839
{'eta': 0.1, 'n_estimators': 100, 'reg_alpha': 0.5, 'reg_lambda': 1.0} 78 0.011669 0.074375 0.524328
{'eta': 0.1, 'n_estimators': 100, 'reg_alpha': 1.0, 'reg_lambda': 0.0} 79 0.011741 0.074464 0.662398
{'eta': 0.1, 'n_estimators': 100, 'reg_alpha': 1.0, 'reg_lambda': 1.0} 80 0.011752 0.074676 0.523580
{'eta': 0.1, 'n_estimators': 100, 'reg_alpha': 1.0, 'reg_lambda': 0.5} 81 0.011808 0.074723 0.584545

81 rows × 4 columns



.. GENERATED FROM PYTHON SOURCE LINES 34-35 Show hyperparameter result plot .. GENERATED FROM PYTHON SOURCE LINES 35-37 .. code-block:: default fig = result.plot(param='n_estimators', figsize=(6, 4.5)) .. image-sg:: /auto_examples/1_train/images/sphx_glr_plot_1_hpo_grid_001.png :alt: HPO Result :srcset: /auto_examples/1_train/images/sphx_glr_plot_1_hpo_grid_001.png :class: sphx-glr-single-img .. GENERATED FROM PYTHON SOURCE LINES 38-39 Refit model using a selected hyperparameter .. GENERATED FROM PYTHON SOURCE LINES 39-42 .. code-block:: default params = result.get_params_ranks(rank=1) exp.model_train(XGB2Regressor(**params), name="XGB2-HPO-GridSearch") .. GENERATED FROM PYTHON SOURCE LINES 43-44 Compare the default model and HPO refitted model .. GENERATED FROM PYTHON SOURCE LINES 44-46 .. code-block:: default exp.model_diagnose("XGB2", show="accuracy_table") .. rst-class:: sphx-glr-script-out .. code-block:: none MSE MAE R2 Train 0.0090 0.0669 0.7382 Test 0.0095 0.0688 0.7287 Gap 0.0005 0.0019 -0.0095 .. GENERATED FROM PYTHON SOURCE LINES 47-48 Compare the default model and HPO refitted model .. GENERATED FROM PYTHON SOURCE LINES 48-48 .. code-block:: default exp.model_diagnose("XGB2-HPO-GridSearch", show="accuracy_table") .. rst-class:: sphx-glr-script-out .. code-block:: none MSE MAE R2 Train 0.0057 0.0535 0.8346 Test 0.0063 0.0559 0.8193 Gap 0.0006 0.0024 -0.0153 .. rst-class:: sphx-glr-timing **Total running time of the script:** ( 3 minutes 52.724 seconds) **Estimated memory usage:** 31 MB .. _sphx_glr_download_auto_examples_1_train_plot_1_hpo_grid.py: .. only:: html .. container:: sphx-glr-footer sphx-glr-footer-example .. container:: binder-badge .. image:: images/binder_badge_logo.svg :target: https://mybinder.org/v2/gh/selfexplainml/piml-toolbox/main?urlpath=lab/tree/./docs/_build/html/notebooks/auto_examples/1_train/plot_1_hpo_grid.ipynb :alt: Launch binder :width: 150 px .. container:: sphx-glr-download sphx-glr-download-python :download:`Download Python source code: plot_1_hpo_grid.py ` .. container:: sphx-glr-download sphx-glr-download-jupyter :download:`Download Jupyter notebook: plot_1_hpo_grid.ipynb ` .. only:: html .. rst-class:: sphx-glr-signature `Gallery generated by Sphinx-Gallery `_