.. DO NOT EDIT. .. THIS FILE WAS AUTOMATICALLY GENERATED BY SPHINX-GALLERY. .. TO MAKE CHANGES, EDIT THE SOURCE PYTHON FILE: .. "auto_examples\3_models\plot_4_xgb1_reg.py" .. LINE NUMBERS ARE GIVEN BELOW. .. only:: html .. note:: :class: sphx-glr-download-link-note :ref:`Go to the end <sphx_glr_download_auto_examples_3_models_plot_4_xgb1_reg.py>` to download the full example code or to run this example in your browser via Binder .. rst-class:: sphx-glr-example-title .. _sphx_glr_auto_examples_3_models_plot_4_xgb1_reg.py: XGB-1 Regression (California Housing) ===================================== .. GENERATED FROM PYTHON SOURCE LINES 8-9 Experiment initialization and data preparation .. GENERATED FROM PYTHON SOURCE LINES 9-16 .. code-block:: Python from piml import Experiment from piml.models import XGB1Regressor exp = Experiment() exp.data_loader(data="CaliforniaHousing_trim2", silent=True) exp.data_prepare(target="MedHouseVal", task_type="regression", silent=True) .. GENERATED FROM PYTHON SOURCE LINES 17-18 Train model .. GENERATED FROM PYTHON SOURCE LINES 18-20 .. code-block:: Python exp.model_train(model=XGB1Regressor(n_estimators=500, max_bin=20, min_bin_size=0.01), name="XGB1") .. GENERATED FROM PYTHON SOURCE LINES 21-22 Train model with monotonicity constrained on MedInc .. GENERATED FROM PYTHON SOURCE LINES 22-26 .. code-block:: Python exp.model_train(model=XGB1Regressor(n_estimators=500, max_bin=20, min_bin_size=0.01, mono_increasing_list=("MedInc", )), name="Mono-XGB1") .. GENERATED FROM PYTHON SOURCE LINES 27-28 Evaluate predictive performance of XGB1 .. GENERATED FROM PYTHON SOURCE LINES 28-30 .. code-block:: Python exp.model_diagnose(model="XGB1", show='accuracy_table') .. rst-class:: sphx-glr-script-out .. code-block:: none MSE MAE R2 Train 0.0131 0.0816 0.7704 Test 0.0136 0.0822 0.7546 Gap 0.0005 0.0006 -0.0159 .. GENERATED FROM PYTHON SOURCE LINES 31-32 Evaluate predictive performance of Mono-XGB1 .. GENERATED FROM PYTHON SOURCE LINES 32-34 .. code-block:: Python exp.model_diagnose(model="Mono-XGB1", show='accuracy_table') .. rst-class:: sphx-glr-script-out .. code-block:: none MSE MAE R2 Train 0.0134 0.0831 0.7649 Test 0.0139 0.0837 0.7490 Gap 0.0005 0.0006 -0.0159 .. GENERATED FROM PYTHON SOURCE LINES 35-36 Global effect plot of XGB1 on MedInc .. GENERATED FROM PYTHON SOURCE LINES 36-39 .. code-block:: Python exp.model_interpret(model="XGB1", show="global_effect_plot", uni_feature="MedInc", original_scale=True, figsize=(5, 4)) .. image-sg:: /auto_examples/3_models/images/sphx_glr_plot_4_xgb1_reg_001.png :alt: MedInc (15.2%) :srcset: /auto_examples/3_models/images/sphx_glr_plot_4_xgb1_reg_001.png :class: sphx-glr-single-img .. GENERATED FROM PYTHON SOURCE LINES 40-41 Global effect plot of Mono-XGB1 on MedInc .. GENERATED FROM PYTHON SOURCE LINES 41-44 .. code-block:: Python exp.model_interpret(model="Mono-XGB1", show="global_effect_plot", uni_feature="MedInc", original_scale=True, figsize=(5, 4)) .. image-sg:: /auto_examples/3_models/images/sphx_glr_plot_4_xgb1_reg_002.png :alt: MedInc (17.6%) :srcset: /auto_examples/3_models/images/sphx_glr_plot_4_xgb1_reg_002.png :class: sphx-glr-single-img .. GENERATED FROM PYTHON SOURCE LINES 45-46 Feature importance of Mono-XGB1 .. GENERATED FROM PYTHON SOURCE LINES 46-48 .. code-block:: Python exp.model_interpret(model="Mono-XGB1", show="global_fi", figsize=(5, 4)) .. image-sg:: /auto_examples/3_models/images/sphx_glr_plot_4_xgb1_reg_003.png :alt: Feature Importance :srcset: /auto_examples/3_models/images/sphx_glr_plot_4_xgb1_reg_003.png :class: sphx-glr-single-img .. GENERATED FROM PYTHON SOURCE LINES 49-50 Weight of evidence plot of Mono-XGB1 on MedInc .. GENERATED FROM PYTHON SOURCE LINES 50-52 .. code-block:: Python exp.model_interpret(model="Mono-XGB1", show="xgb1_woe", uni_feature="MedInc", original_scale=True, figsize=(5, 4)) .. image-sg:: /auto_examples/3_models/images/sphx_glr_plot_4_xgb1_reg_004.png :alt: WoE of MedInc (IV: 0.1253) :srcset: /auto_examples/3_models/images/sphx_glr_plot_4_xgb1_reg_004.png :class: sphx-glr-single-img .. GENERATED FROM PYTHON SOURCE LINES 53-54 Information value plot of Mono-XGB1 .. GENERATED FROM PYTHON SOURCE LINES 54-56 .. code-block:: Python exp.model_interpret(model="Mono-XGB1", show="xgb1_iv", figsize=(5, 4)) .. image-sg:: /auto_examples/3_models/images/sphx_glr_plot_4_xgb1_reg_005.png :alt: Information Value :srcset: /auto_examples/3_models/images/sphx_glr_plot_4_xgb1_reg_005.png :class: sphx-glr-single-img .. GENERATED FROM PYTHON SOURCE LINES 57-58 Local interpretation of Mono-XGB1 .. GENERATED FROM PYTHON SOURCE LINES 58-59 .. code-block:: Python exp.model_interpret(model="Mono-XGB1", show="local_fi", sample_id=0, original_scale=True, figsize=(5, 4)) .. image-sg:: /auto_examples/3_models/images/sphx_glr_plot_4_xgb1_reg_006.png :alt: Predicted: 0.3703 | Actual: 1.0000 :srcset: /auto_examples/3_models/images/sphx_glr_plot_4_xgb1_reg_006.png :class: sphx-glr-single-img .. rst-class:: sphx-glr-timing **Total running time of the script:** (0 minutes 8.159 seconds) .. _sphx_glr_download_auto_examples_3_models_plot_4_xgb1_reg.py: .. only:: html .. container:: sphx-glr-footer sphx-glr-footer-example .. container:: binder-badge .. image:: images/binder_badge_logo.svg :target: https://mybinder.org/v2/gh/selfexplainml/piml-toolbox/main?urlpath=lab/tree/./docs/_build/html/notebooks/auto_examples/3_models/plot_4_xgb1_reg.ipynb :alt: Launch binder :width: 150 px .. container:: sphx-glr-download sphx-glr-download-jupyter :download:`Download Jupyter notebook: plot_4_xgb1_reg.ipynb <plot_4_xgb1_reg.ipynb>` .. container:: sphx-glr-download sphx-glr-download-python :download:`Download Python source code: plot_4_xgb1_reg.py <plot_4_xgb1_reg.py>` .. only:: html .. rst-class:: sphx-glr-signature `Gallery generated by Sphinx-Gallery <https://sphinx-gallery.github.io>`_