.. DO NOT EDIT.
.. THIS FILE WAS AUTOMATICALLY GENERATED BY SPHINX-GALLERY.
.. TO MAKE CHANGES, EDIT THE SOURCE PYTHON FILE:
.. "auto_examples\3_models\plot_4_xgb1_reg.py"
.. LINE NUMBERS ARE GIVEN BELOW.

.. only:: html

    .. note::
        :class: sphx-glr-download-link-note

        :ref:`Go to the end <sphx_glr_download_auto_examples_3_models_plot_4_xgb1_reg.py>`
        to download the full example code or to run this example in your browser via Binder

.. rst-class:: sphx-glr-example-title

.. _sphx_glr_auto_examples_3_models_plot_4_xgb1_reg.py:


XGB-1 Regression (California Housing)
=====================================

.. GENERATED FROM PYTHON SOURCE LINES 8-9

Experiment initialization and data preparation

.. GENERATED FROM PYTHON SOURCE LINES 9-16

.. code-block:: Python

    from piml import Experiment
    from piml.models import XGB1Regressor

    exp = Experiment()
    exp.data_loader(data="CaliforniaHousing_trim2", silent=True)
    exp.data_prepare(target="MedHouseVal", task_type="regression", silent=True)








.. GENERATED FROM PYTHON SOURCE LINES 17-18

Train model

.. GENERATED FROM PYTHON SOURCE LINES 18-20

.. code-block:: Python

    exp.model_train(model=XGB1Regressor(n_estimators=500, max_bin=20, min_bin_size=0.01), name="XGB1")








.. GENERATED FROM PYTHON SOURCE LINES 21-22

Train model with monotonicity constrained on MedInc

.. GENERATED FROM PYTHON SOURCE LINES 22-26

.. code-block:: Python

    exp.model_train(model=XGB1Regressor(n_estimators=500, max_bin=20, min_bin_size=0.01,
                                        mono_increasing_list=("MedInc", )),
                    name="Mono-XGB1")








.. GENERATED FROM PYTHON SOURCE LINES 27-28

Evaluate predictive performance of XGB1

.. GENERATED FROM PYTHON SOURCE LINES 28-30

.. code-block:: Python

    exp.model_diagnose(model="XGB1", show='accuracy_table')





.. rst-class:: sphx-glr-script-out

 .. code-block:: none

              MSE     MAE       R2
                              
    Train  0.0131  0.0816   0.7704
    Test   0.0136  0.0822   0.7546
    Gap    0.0005  0.0006  -0.0159




.. GENERATED FROM PYTHON SOURCE LINES 31-32

Evaluate predictive performance of Mono-XGB1

.. GENERATED FROM PYTHON SOURCE LINES 32-34

.. code-block:: Python

    exp.model_diagnose(model="Mono-XGB1", show='accuracy_table')





.. rst-class:: sphx-glr-script-out

 .. code-block:: none

              MSE     MAE       R2
                              
    Train  0.0134  0.0831   0.7649
    Test   0.0139  0.0837   0.7490
    Gap    0.0005  0.0006  -0.0159




.. GENERATED FROM PYTHON SOURCE LINES 35-36

Global effect plot of XGB1 on MedInc

.. GENERATED FROM PYTHON SOURCE LINES 36-39

.. code-block:: Python

    exp.model_interpret(model="XGB1", show="global_effect_plot", uni_feature="MedInc",
                        original_scale=True, figsize=(5, 4))




.. image-sg:: /auto_examples/3_models/images/sphx_glr_plot_4_xgb1_reg_001.png
   :alt: MedInc (15.2%)
   :srcset: /auto_examples/3_models/images/sphx_glr_plot_4_xgb1_reg_001.png
   :class: sphx-glr-single-img





.. GENERATED FROM PYTHON SOURCE LINES 40-41

Global effect plot of Mono-XGB1 on MedInc   

.. GENERATED FROM PYTHON SOURCE LINES 41-44

.. code-block:: Python

    exp.model_interpret(model="Mono-XGB1", show="global_effect_plot", uni_feature="MedInc",
                        original_scale=True, figsize=(5, 4))




.. image-sg:: /auto_examples/3_models/images/sphx_glr_plot_4_xgb1_reg_002.png
   :alt: MedInc (17.6%)
   :srcset: /auto_examples/3_models/images/sphx_glr_plot_4_xgb1_reg_002.png
   :class: sphx-glr-single-img





.. GENERATED FROM PYTHON SOURCE LINES 45-46

Feature importance of Mono-XGB1    

.. GENERATED FROM PYTHON SOURCE LINES 46-48

.. code-block:: Python

    exp.model_interpret(model="Mono-XGB1", show="global_fi", figsize=(5, 4))




.. image-sg:: /auto_examples/3_models/images/sphx_glr_plot_4_xgb1_reg_003.png
   :alt: Feature Importance
   :srcset: /auto_examples/3_models/images/sphx_glr_plot_4_xgb1_reg_003.png
   :class: sphx-glr-single-img





.. GENERATED FROM PYTHON SOURCE LINES 49-50

Weight of evidence plot of Mono-XGB1 on MedInc

.. GENERATED FROM PYTHON SOURCE LINES 50-52

.. code-block:: Python

    exp.model_interpret(model="Mono-XGB1", show="xgb1_woe", uni_feature="MedInc", original_scale=True, figsize=(5, 4))




.. image-sg:: /auto_examples/3_models/images/sphx_glr_plot_4_xgb1_reg_004.png
   :alt: WoE of MedInc (IV: 0.1253)
   :srcset: /auto_examples/3_models/images/sphx_glr_plot_4_xgb1_reg_004.png
   :class: sphx-glr-single-img





.. GENERATED FROM PYTHON SOURCE LINES 53-54

Information value plot of Mono-XGB1  

.. GENERATED FROM PYTHON SOURCE LINES 54-56

.. code-block:: Python

    exp.model_interpret(model="Mono-XGB1", show="xgb1_iv", figsize=(5, 4))




.. image-sg:: /auto_examples/3_models/images/sphx_glr_plot_4_xgb1_reg_005.png
   :alt: Information Value
   :srcset: /auto_examples/3_models/images/sphx_glr_plot_4_xgb1_reg_005.png
   :class: sphx-glr-single-img





.. GENERATED FROM PYTHON SOURCE LINES 57-58

Local interpretation of Mono-XGB1  

.. GENERATED FROM PYTHON SOURCE LINES 58-59

.. code-block:: Python

    exp.model_interpret(model="Mono-XGB1", show="local_fi", sample_id=0, original_scale=True, figsize=(5, 4))



.. image-sg:: /auto_examples/3_models/images/sphx_glr_plot_4_xgb1_reg_006.png
   :alt: Predicted: 0.3703 | Actual: 1.0000
   :srcset: /auto_examples/3_models/images/sphx_glr_plot_4_xgb1_reg_006.png
   :class: sphx-glr-single-img






.. rst-class:: sphx-glr-timing

   **Total running time of the script:** (0 minutes 8.159 seconds)


.. _sphx_glr_download_auto_examples_3_models_plot_4_xgb1_reg.py:

.. only:: html

  .. container:: sphx-glr-footer sphx-glr-footer-example

    .. container:: binder-badge

      .. image:: images/binder_badge_logo.svg
        :target: https://mybinder.org/v2/gh/selfexplainml/piml-toolbox/main?urlpath=lab/tree/./docs/_build/html/notebooks/auto_examples/3_models/plot_4_xgb1_reg.ipynb
        :alt: Launch binder
        :width: 150 px

    .. container:: sphx-glr-download sphx-glr-download-jupyter

      :download:`Download Jupyter notebook: plot_4_xgb1_reg.ipynb <plot_4_xgb1_reg.ipynb>`

    .. container:: sphx-glr-download sphx-glr-download-python

      :download:`Download Python source code: plot_4_xgb1_reg.py <plot_4_xgb1_reg.py>`


.. only:: html

 .. rst-class:: sphx-glr-signature

    `Gallery generated by Sphinx-Gallery <https://sphinx-gallery.github.io>`_