.. DO NOT EDIT. .. THIS FILE WAS AUTOMATICALLY GENERATED BY SPHINX-GALLERY. .. TO MAKE CHANGES, EDIT THE SOURCE PYTHON FILE: .. "auto_examples\4_testing\plot_1_weakspot_reg.py" .. LINE NUMBERS ARE GIVEN BELOW. .. only:: html .. note:: :class: sphx-glr-download-link-note :ref:`Go to the end ` to download the full example code or to run this example in your browser via Binder .. rst-class:: sphx-glr-example-title .. _sphx_glr_auto_examples_4_testing_plot_1_weakspot_reg.py: WeakSpot: Regression ===================================== .. GENERATED FROM PYTHON SOURCE LINES 8-9 Experiment initialization and data preparation .. GENERATED FROM PYTHON SOURCE LINES 9-17 .. code-block:: default from piml import Experiment from piml.models import XGB2Regressor exp = Experiment() exp.data_loader(data="BikeSharing", silent=True) exp.data_summary(feature_exclude=["yr", "mnth", "temp"], silent=True) exp.data_prepare(target="cnt", task_type="regression", silent=True) .. GENERATED FROM PYTHON SOURCE LINES 18-19 Train Model .. GENERATED FROM PYTHON SOURCE LINES 19-20 .. code-block:: default exp.model_train(model=XGB2Regressor(), name="XGB2") .. GENERATED FROM PYTHON SOURCE LINES 21-22 Histogram-based weakspot for a single feature .. GENERATED FROM PYTHON SOURCE LINES 22-26 .. code-block:: default results = exp.model_diagnose(model="XGB2", show="weakspot", slice_method="histogram", slice_features=["hr"], threshold=1.1, min_samples=100, return_data=True, figsize=(5, 4)) results.data .. image-sg:: /auto_examples/4_testing/images/sphx_glr_plot_1_weakspot_reg_001.png :alt: Weak Regions :srcset: /auto_examples/4_testing/images/sphx_glr_plot_1_weakspot_reg_001.png :class: sphx-glr-single-img .. raw:: html
[hr hr) #Test #Train test_MSE train_MSE Gap
0 0.3 0.4 445 1736 0.0219 0.0197 0.0022
1 0.7 0.8 290 1168 0.0307 0.0304 0.0003


.. GENERATED FROM PYTHON SOURCE LINES 27-28 Histogram-based weakspot for two features .. GENERATED FROM PYTHON SOURCE LINES 28-33 .. code-block:: default results = exp.model_diagnose(model="XGB2", show="weakspot", slice_method="histogram", slice_features=["hr", "workingday"], threshold=1.1, min_samples=100, return_data=True, figsize=(5, 4)) results.data .. image-sg:: /auto_examples/4_testing/images/sphx_glr_plot_1_weakspot_reg_002.png :alt: Weak Regions :srcset: /auto_examples/4_testing/images/sphx_glr_plot_1_weakspot_reg_002.png :class: sphx-glr-single-img .. raw:: html
[hr hr) [workingday workingday) #Test #Train test_MSE train_MSE Gap
0 0.3 0.4 0.0 1.0 445 1736 0.0219 0.0197 2.2042e-03
1 0.5 0.6 0.0 0.5 85 377 0.0219 0.0207 1.1186e-03
2 0.7 0.8 0.0 1.0 290 1168 0.0307 0.0304 3.0630e-04
3 0.6 0.7 0.0 0.5 155 538 0.0159 0.0158 9.2337e-05
4 0.4 0.5 0.0 0.5 97 365 0.0103 0.0110 -6.7680e-04


.. GENERATED FROM PYTHON SOURCE LINES 34-35 Histogram-based weakspot for a single feature on test set .. GENERATED FROM PYTHON SOURCE LINES 35-39 .. code-block:: default results = exp.model_diagnose(model="XGB2", show="weakspot", slice_method="histogram", slice_features=["hr"], threshold=1.1, min_samples=100, use_test=True, return_data=True, figsize=(5, 4)) results.data .. image-sg:: /auto_examples/4_testing/images/sphx_glr_plot_1_weakspot_reg_003.png :alt: Weak Regions :srcset: /auto_examples/4_testing/images/sphx_glr_plot_1_weakspot_reg_003.png :class: sphx-glr-single-img .. raw:: html
[hr hr) #Test #Train test_MSE train_MSE Gap
0 0.3 0.4 445 1736 0.0219 0.0197 0.0022
1 0.7 0.8 290 1168 0.0307 0.0304 0.0003


.. GENERATED FROM PYTHON SOURCE LINES 40-41 Histogram-based weakspot for a single feature using MAE metric .. GENERATED FROM PYTHON SOURCE LINES 41-46 .. code-block:: default results = exp.model_diagnose(model="XGB2", show="weakspot", slice_method="histogram", slice_features=["hr"], threshold=1.1, min_samples=100, metric="MAE", return_data=True, figsize=(5, 4)) results.data .. image-sg:: /auto_examples/4_testing/images/sphx_glr_plot_1_weakspot_reg_004.png :alt: Weak Regions :srcset: /auto_examples/4_testing/images/sphx_glr_plot_1_weakspot_reg_004.png :class: sphx-glr-single-img .. raw:: html
[hr hr) #Test #Train test_MAE train_MAE Gap
0 0.3 0.4 445 1736 0.1163 0.1106 0.0058
1 0.6 0.8 735 2911 0.1046 0.1031 0.0015


.. GENERATED FROM PYTHON SOURCE LINES 47-48 Tree-based weakspot for a single feature using MAE metric .. GENERATED FROM PYTHON SOURCE LINES 48-52 .. code-block:: default results = exp.model_diagnose(model="XGB2", show="weakspot", slice_method="tree", slice_features=["hr"], threshold=1.1, min_samples=100, metric="MAE", return_data=True, figsize=(5, 4)) results.data .. image-sg:: /auto_examples/4_testing/images/sphx_glr_plot_1_weakspot_reg_005.png :alt: Weak Regions :srcset: /auto_examples/4_testing/images/sphx_glr_plot_1_weakspot_reg_005.png :class: sphx-glr-single-img .. raw:: html
[hr hr) #Test #Train test_MAE train_MAE Gap
0 0.2826 0.3696 283 1171 0.1495 0.1352 0.0143
1 0.3696 1.0000 2214 8710 0.0749 0.0747 0.0002


.. rst-class:: sphx-glr-timing **Total running time of the script:** ( 0 minutes 56.209 seconds) **Estimated memory usage:** 22 MB .. _sphx_glr_download_auto_examples_4_testing_plot_1_weakspot_reg.py: .. only:: html .. container:: sphx-glr-footer sphx-glr-footer-example .. container:: binder-badge .. image:: images/binder_badge_logo.svg :target: https://mybinder.org/v2/gh/selfexplainml/piml-toolbox/main?urlpath=lab/tree/./docs/_build/html/notebooks/auto_examples/4_testing/plot_1_weakspot_reg.ipynb :alt: Launch binder :width: 150 px .. container:: sphx-glr-download sphx-glr-download-python :download:`Download Python source code: plot_1_weakspot_reg.py ` .. container:: sphx-glr-download sphx-glr-download-jupyter :download:`Download Jupyter notebook: plot_1_weakspot_reg.ipynb ` .. only:: html .. rst-class:: sphx-glr-signature `Gallery generated by Sphinx-Gallery `_