.. DO NOT EDIT. .. THIS FILE WAS AUTOMATICALLY GENERATED BY SPHINX-GALLERY. .. TO MAKE CHANGES, EDIT THE SOURCE PYTHON FILE: .. "auto_examples\4_testing\plot_6_fairness.py" .. LINE NUMBERS ARE GIVEN BELOW. .. only:: html .. note:: :class: sphx-glr-download-link-note :ref:`Go to the end ` to download the full example code or to run this example in your browser via Binder .. rst-class:: sphx-glr-example-title .. _sphx_glr_auto_examples_4_testing_plot_6_fairness.py: Fairness Test: XGB2 ===================================== .. GENERATED FROM PYTHON SOURCE LINES 8-9 Experiment initialization and data preparation .. GENERATED FROM PYTHON SOURCE LINES 9-17 .. code-block:: default from piml import Experiment from piml.models import XGB2Classifier exp = Experiment() exp.data_loader("SimuCredit", silent=True) exp.data_summary(feature_exclude=["Race", "Gender"], silent=True) exp.data_prepare(target="Approved", task_type="classification", silent=True) .. GENERATED FROM PYTHON SOURCE LINES 18-19 Train Model .. GENERATED FROM PYTHON SOURCE LINES 19-26 .. code-block:: default exp.model_train(XGB2Classifier(max_depth=2, n_estimators=100, mono_increasing_list=["Mortgage", "Balance"], mono_decreasing_list=["Amount Past Due", "Utilization", "Delinquency", "Credit Inquiry", "Open Trade"]), name="XGB2_monotonic") .. GENERATED FROM PYTHON SOURCE LINES 27-28 Fairness Metric .. GENERATED FROM PYTHON SOURCE LINES 28-40 .. code-block:: default metrics_result = exp.model_fairness(model="XGB2_monotonic", show="metrics", metric="AIR", group_category=["Race", "Gender"], reference_group=[1., 1.], protected_group=[0., 0.], favorable_threshold=0.5, performance_metric="ACC", return_data=True, figsize=(5, 4)) metrics_result.data .. image-sg:: /auto_examples/4_testing/images/sphx_glr_plot_6_fairness_001.png :alt: Adverse Impact Ratio :srcset: /auto_examples/4_testing/images/sphx_glr_plot_6_fairness_001.png :class: sphx-glr-single-img .. raw:: html
Group Index Group Category Reference Group Protected Group AIR
0 0 Race 1.0 0.0 0.612
1 1 Gender 1.0 0.0 0.745


.. GENERATED FROM PYTHON SOURCE LINES 41-42 Fairness Segmented .. GENERATED FROM PYTHON SOURCE LINES 42-55 .. code-block:: default segmented_result = exp.model_fairness(model="XGB2_monotonic", show="segmented", metric="AIR", segment_feature="Balance", group_category=["Race", "Gender"], reference_group=[1., 1.], protected_group=[0., 0.], favorable_threshold=0.5, segment_bins=5, return_data=True, figsize=(10, 4)) segmented_result.data .. image-sg:: /auto_examples/4_testing/images/sphx_glr_plot_6_fairness_002.png :alt: Group: 0 (Race), Group: 1 (Gender) :srcset: /auto_examples/4_testing/images/sphx_glr_plot_6_fairness_002.png :class: sphx-glr-single-img .. raw:: html
Segment Lower Bound Upper Bound 0-Race | AIR 1-Gender | AIR
0 0 0.97 306.61 0.4485 0.6607
1 1 306.62 601.40 0.4767 0.6426
2 2 601.47 1027.23 0.6319 0.6556
3 3 1027.29 1864.90 0.6486 0.7978
4 4 1864.94 20384.87 0.8781 0.8266


.. GENERATED FROM PYTHON SOURCE LINES 56-57 Fairness Binning .. GENERATED FROM PYTHON SOURCE LINES 57-71 .. code-block:: default binning_result = exp.model_fairness(model="XGB2_monotonic", show="binning", metric="AIR", group_category=["Race", "Gender"], reference_group=[1., 1.], protected_group=[0., 0.], favorable_threshold=0.5, performance_metric="F1", binning_dict={"Balance": {"type": "quantile", "value": [1, 5]}, "Mortgage": {"type": "uniform", "value": [1, 5]}, "Amount Past Due": {"type": "custom", "value": (0, 100)}}, return_data=True, figsize=(10, 4)) binning_result.data .. image-sg:: /auto_examples/4_testing/images/sphx_glr_plot_6_fairness_003.png :alt: Group: 0 (Race), Group: 1 (Gender) :srcset: /auto_examples/4_testing/images/sphx_glr_plot_6_fairness_003.png :class: sphx-glr-single-img .. raw:: html
ID Configuration Gender | AIR Race | AIR F1
0 0 Original 0.7450 0.6120 0.7163
1 1 Balance: 1, Mortgage: 1, Amount Past Due: (0, 100) 1.0004 1.0063 0.5049
2 2 Balance: 1, Mortgage: 2, Amount Past Due: (0, 100) 1.0009 1.0008 0.5064
3 3 Balance: 1, Mortgage: 3, Amount Past Due: (0, 100) 1.0032 0.9776 0.5127
4 4 Balance: 1, Mortgage: 4, Amount Past Due: (0, 100) 1.0048 0.9273 0.5276
5 5 Balance: 1, Mortgage: 5, Amount Past Due: (0, 100) 1.0160 0.8439 0.5374
6 6 Balance: 2, Mortgage: 1, Amount Past Due: (0, 100) 0.5674 0.9873 0.3577
7 7 Balance: 2, Mortgage: 2, Amount Past Due: (0, 100) 0.5718 0.9743 0.3611
8 8 Balance: 2, Mortgage: 3, Amount Past Due: (0, 100) 0.5805 0.9321 0.3713
9 9 Balance: 2, Mortgage: 4, Amount Past Due: (0, 100) 0.5921 0.8310 0.3991
10 10 Balance: 2, Mortgage: 5, Amount Past Due: (0, 100) 0.5918 0.6627 0.4014
11 11 Balance: 3, Mortgage: 1, Amount Past Due: (0, 100) 0.4346 1.0061 0.3877
12 12 Balance: 3, Mortgage: 2, Amount Past Due: (0, 100) 0.4388 0.9928 0.3915
13 13 Balance: 3, Mortgage: 3, Amount Past Due: (0, 100) 0.4569 0.9530 0.4011
14 14 Balance: 3, Mortgage: 4, Amount Past Due: (0, 100) 0.4852 0.8571 0.4290
15 15 Balance: 3, Mortgage: 5, Amount Past Due: (0, 100) 0.5129 0.7078 0.4340
16 16 Balance: 4, Mortgage: 1, Amount Past Due: (0, 100) 0.4720 0.9962 0.4153
17 17 Balance: 4, Mortgage: 2, Amount Past Due: (0, 100) 0.4746 0.9865 0.4179
18 18 Balance: 4, Mortgage: 3, Amount Past Due: (0, 100) 0.4921 0.9476 0.4276
19 19 Balance: 4, Mortgage: 4, Amount Past Due: (0, 100) 0.5191 0.8632 0.4516
20 20 Balance: 4, Mortgage: 5, Amount Past Due: (0, 100) 0.5259 0.6781 0.4292
21 21 Balance: 5, Mortgage: 1, Amount Past Due: (0, 100) 0.4835 1.0036 0.4054
22 22 Balance: 5, Mortgage: 2, Amount Past Due: (0, 100) 0.4873 0.9920 0.4087
23 23 Balance: 5, Mortgage: 3, Amount Past Due: (0, 100) 0.5048 0.9508 0.4186
24 24 Balance: 5, Mortgage: 4, Amount Past Due: (0, 100) 0.5227 0.8739 0.4412
25 25 Balance: 5, Mortgage: 5, Amount Past Due: (0, 100) 0.5172 0.7055 0.4302


.. GENERATED FROM PYTHON SOURCE LINES 72-73 Fairness Thresholding .. GENERATED FROM PYTHON SOURCE LINES 73-84 .. code-block:: default thresholding_result = exp.model_fairness(model="XGB2_monotonic", show="thresholding", metric="AIR", group_category=["Race", "Gender"], reference_group=[1., 1.], protected_group=[0., 0.], favorable_threshold=0.32, performance_metric="ACC", return_data=True, figsize=(10, 4)) thresholding_result.data .. image-sg:: /auto_examples/4_testing/images/sphx_glr_plot_6_fairness_004.png :alt: Group: 0 (Race), Group: 1 (Gender) :srcset: /auto_examples/4_testing/images/sphx_glr_plot_6_fairness_004.png :class: sphx-glr-single-img .. raw:: html
Group Index Group Category Reference Group Protected Group Threshold AIR ACC
0 0 Race 1.0 0.0 0.3324 0.8862 0.6757
1 1 Gender 1.0 0.0 0.3324 0.8917 0.6757


.. rst-class:: sphx-glr-timing **Total running time of the script:** ( 0 minutes 45.841 seconds) **Estimated memory usage:** 23 MB .. _sphx_glr_download_auto_examples_4_testing_plot_6_fairness.py: .. only:: html .. container:: sphx-glr-footer sphx-glr-footer-example .. container:: binder-badge .. image:: images/binder_badge_logo.svg :target: https://mybinder.org/v2/gh/selfexplainml/piml-toolbox/main?urlpath=lab/tree/./docs/_build/html/notebooks/auto_examples/4_testing/plot_6_fairness.ipynb :alt: Launch binder :width: 150 px .. container:: sphx-glr-download sphx-glr-download-python :download:`Download Python source code: plot_6_fairness.py ` .. container:: sphx-glr-download sphx-glr-download-jupyter :download:`Download Jupyter notebook: plot_6_fairness.ipynb ` .. only:: html .. rst-class:: sphx-glr-signature `Gallery generated by Sphinx-Gallery `_