.. DO NOT EDIT. .. THIS FILE WAS AUTOMATICALLY GENERATED BY SPHINX-GALLERY. .. TO MAKE CHANGES, EDIT THE SOURCE PYTHON FILE: .. "auto_examples\4_testing\plot_7_segmented_reg.py" .. LINE NUMBERS ARE GIVEN BELOW. .. only:: html .. note:: :class: sphx-glr-download-link-note :ref:`Go to the end ` to download the full example code or to run this example in your browser via Binder .. rst-class:: sphx-glr-example-title .. _sphx_glr_auto_examples_4_testing_plot_7_segmented_reg.py: Segmented Diagnose (Regression) ======================================================== .. GENERATED FROM PYTHON SOURCE LINES 8-9 Experiment initialization and data preparation .. GENERATED FROM PYTHON SOURCE LINES 9-17 .. code-block:: default from piml import Experiment from piml.models import XGB2Regressor exp = Experiment() exp.data_loader(data="BikeSharing", silent=True) exp.data_summary(feature_exclude=["yr", "mnth", "temp"], silent=True) exp.data_prepare(target="cnt", task_type="regression", silent=True) .. GENERATED FROM PYTHON SOURCE LINES 18-19 Train Model .. GENERATED FROM PYTHON SOURCE LINES 19-21 .. code-block:: default exp.model_train(XGB2Regressor(), name="XGB2") .. GENERATED FROM PYTHON SOURCE LINES 22-23 Summary of all segments (top 10 with the worst performance) .. GENERATED FROM PYTHON SOURCE LINES 23-27 .. code-block:: default result = exp.segmented_diagnose(model='XGB2', show='segment_table', segment_method='uniform', segment_bins=5, return_data=True) result.data.head(10) .. rst-class:: sphx-glr-script-out .. code-block:: none .. raw:: html
Segment ID Feature Segment Size MSE
0 0 hr [0.6, 0.8) 735 0.018380
1 1 hr [0.2, 0.4) 712 0.014116
2 2 hum [0.0, 0.2) 15 0.013335
3 3 hum [0.2, 0.4) 441 0.013161
4 4 atemp [0.5909, 0.7878) 1026 0.012643
5 5 season 2.0 912 0.011245
6 6 windspeed [0.7298, 0.9123] 12 0.011149
7 7 workingday 0.0 1131 0.010764
8 8 windspeed [0.1825, 0.3649) 1598 0.010634
9 9 season 3.0 874 0.010363


.. GENERATED FROM PYTHON SOURCE LINES 28-29 Summary of all segments of a given feature (top 10 with the worst performance) .. GENERATED FROM PYTHON SOURCE LINES 29-33 .. code-block:: default result = exp.segmented_diagnose(model="XGB2", show="segment_table", segment_method="uniform", segment_feature="hr", segment_bins=5, return_data=True) result.data .. rst-class:: sphx-glr-script-out .. code-block:: none .. raw:: html
Segment ID Feature Segment Size MSE
0 0 hr [0.6, 0.8) 735 0.018380
1 1 hr [0.2, 0.4) 712 0.014116
2 2 hr [0.4, 0.6) 585 0.007795
3 3 hr [0.8, 1.0] 732 0.005194
4 4 hr [0.0, 0.2) 712 0.001655


.. GENERATED FROM PYTHON SOURCE LINES 34-35 Residual analysis of the samples in that segment .. GENERATED FROM PYTHON SOURCE LINES 35-39 .. code-block:: default exp.segmented_diagnose(model="XGB2", show="accuracy_residual", segment_method="uniform", segment_feature="hr", segment_bins=5, segment_id=0, show_feature="atemp", figsize=(5, 4)) .. image-sg:: /auto_examples/4_testing/images/sphx_glr_plot_7_segmented_reg_001.png :alt: Residual Plot :srcset: /auto_examples/4_testing/images/sphx_glr_plot_7_segmented_reg_001.png :class: sphx-glr-single-img .. GENERATED FROM PYTHON SOURCE LINES 40-41 Weakspot analysis of the samples in that segment .. GENERATED FROM PYTHON SOURCE LINES 41-45 .. code-block:: default exp.segmented_diagnose(model="XGB2", show="weakspot", segment_method="uniform", segment_feature="hr", segment_bins=5, segment_id=0, slice_features=["atemp"], metric="MSE", figsize=(5, 4)) .. image-sg:: /auto_examples/4_testing/images/sphx_glr_plot_7_segmented_reg_002.png :alt: Weak Regions :srcset: /auto_examples/4_testing/images/sphx_glr_plot_7_segmented_reg_002.png :class: sphx-glr-single-img .. GENERATED FROM PYTHON SOURCE LINES 46-47 Distributional distance comparison between the specificed segment and the remaining (feature-by-feature) .. GENERATED FROM PYTHON SOURCE LINES 47-51 .. code-block:: default res = exp.segmented_diagnose(model="XGB2", show="distribution_shift", segment_method="uniform", segment_feature="hr", segment_bins=5, segment_id=0, figsize=(5, 4), return_data=True) .. image-sg:: /auto_examples/4_testing/images/sphx_glr_plot_7_segmented_reg_003.png :alt: Data distance(In segment vs. out of segment) :srcset: /auto_examples/4_testing/images/sphx_glr_plot_7_segmented_reg_003.png :class: sphx-glr-single-img .. GENERATED FROM PYTHON SOURCE LINES 52-53 Distributional distance comparison between the specificed segment and the remaining (density of one selected feature) .. GENERATED FROM PYTHON SOURCE LINES 53-56 .. code-block:: default res = exp.segmented_diagnose(model="XGB2", show="distribution_shift", segment_method="uniform", segment_feature="hr", segment_bins=5, segment_id=0, show_feature="hum", figsize=(5, 4), return_data=True) .. image-sg:: /auto_examples/4_testing/images/sphx_glr_plot_7_segmented_reg_004.png :alt: Distribution plot :srcset: /auto_examples/4_testing/images/sphx_glr_plot_7_segmented_reg_004.png :class: sphx-glr-single-img .. rst-class:: sphx-glr-timing **Total running time of the script:** ( 0 minutes 57.184 seconds) **Estimated memory usage:** 27 MB .. _sphx_glr_download_auto_examples_4_testing_plot_7_segmented_reg.py: .. only:: html .. container:: sphx-glr-footer sphx-glr-footer-example .. container:: binder-badge .. image:: images/binder_badge_logo.svg :target: https://mybinder.org/v2/gh/selfexplainml/piml-toolbox/main?urlpath=lab/tree/./docs/_build/html/notebooks/auto_examples/4_testing/plot_7_segmented_reg.ipynb :alt: Launch binder :width: 150 px .. container:: sphx-glr-download sphx-glr-download-python :download:`Download Python source code: plot_7_segmented_reg.py ` .. container:: sphx-glr-download sphx-glr-download-jupyter :download:`Download Jupyter notebook: plot_7_segmented_reg.ipynb ` .. only:: html .. rst-class:: sphx-glr-signature `Gallery generated by Sphinx-Gallery `_