Data Load (Pandas DataFrame)

Experiment initialization and data preparation

import pandas as pd
from piml import Experiment

exp = Experiment()
data = pd.read_csv('https://github.com/SelfExplainML/PiML-Toolbox/blob/main/datasets/BikeSharing.csv?raw=true')
exp.data_loader(data=data)
       season  yr  mnth  hr  holiday  weekday  workingday  weathersit  temp  \
0           1   0     1   0        0        6           0           1  0.24
1           1   0     1   1        0        6           0           1  0.22
2           1   0     1   2        0        6           0           1  0.22
3           1   0     1   3        0        6           0           1  0.24
4           1   0     1   4        0        6           0           1  0.24
...       ...  ..   ...  ..      ...      ...         ...         ...   ...
17374       1   1    12  19        0        1           1           2  0.26
17375       1   1    12  20        0        1           1           2  0.26
17376       1   1    12  21        0        1           1           1  0.26
17377       1   1    12  22        0        1           1           1  0.26
17378       1   1    12  23        0        1           1           1  0.26

        atemp   hum  windspeed  cnt
0      0.2879  0.81     0.0000   16
1      0.2727  0.80     0.0000   40
2      0.2727  0.80     0.0000   32
3      0.2879  0.75     0.0000   13
4      0.2879  0.75     0.0000    1
...       ...   ...        ...  ...
17374  0.2576  0.60     0.1642  119
17375  0.2576  0.60     0.1642   89
17376  0.2576  0.60     0.1642   90
17377  0.2727  0.56     0.1343   61
17378  0.2727  0.65     0.1343   49

[17379 rows x 13 columns]

Total running time of the script: ( 0 minutes 8.890 seconds)

Estimated memory usage: 19 MB

Gallery generated by Sphinx-Gallery