Note
Go to the end to download the full example code or to run this example in your browser via Binder
Data Load (Pandas DataFrame)¶
Experiment initialization and data preparation
import pandas as pd
from piml import Experiment
exp = Experiment()
data = pd.read_csv('https://github.com/SelfExplainML/PiML-Toolbox/blob/main/datasets/BikeSharing.csv?raw=true')
exp.data_loader(data=data)
season yr mnth hr holiday weekday workingday weathersit temp \
0 1 0 1 0 0 6 0 1 0.24
1 1 0 1 1 0 6 0 1 0.22
2 1 0 1 2 0 6 0 1 0.22
3 1 0 1 3 0 6 0 1 0.24
4 1 0 1 4 0 6 0 1 0.24
... ... .. ... .. ... ... ... ... ...
17374 1 1 12 19 0 1 1 2 0.26
17375 1 1 12 20 0 1 1 2 0.26
17376 1 1 12 21 0 1 1 1 0.26
17377 1 1 12 22 0 1 1 1 0.26
17378 1 1 12 23 0 1 1 1 0.26
atemp hum windspeed cnt
0 0.2879 0.81 0.0000 16
1 0.2727 0.80 0.0000 40
2 0.2727 0.80 0.0000 32
3 0.2879 0.75 0.0000 13
4 0.2879 0.75 0.0000 1
... ... ... ... ...
17374 0.2576 0.60 0.1642 119
17375 0.2576 0.60 0.1642 89
17376 0.2576 0.60 0.1642 90
17377 0.2727 0.56 0.1343 61
17378 0.2727 0.65 0.1343 49
[17379 rows x 13 columns]
Total running time of the script: ( 0 minutes 8.890 seconds)
Estimated memory usage: 19 MB