Install
User Guide
API
Examples
Toggle Menu
User Guide
1. Introduction
2. Data Pipeline
3. Model Train and Tune
4. Post-hoc Explainability
5. Interpretable Models
6. Diagnostic Suite
7. Model Comparison
8. Case Studies
User Guide
¶
1. Introduction
1.1. Introduction
1.2. Toolbox Design
1.3. Interpretable Models
1.4. Diagnostic Suite
1.5. Future Plan
2. Data Pipeline
2.1. Data Load
2.2. Data Summary
2.3. Data Preparation
2.4. Exploratory Analysis
2.5. Data Quality (Integrity Check)
2.6. Data Quality (Outlier Detection)
2.7. Data Quality (Drift Test)
2.8. Feature Selection
3. Model Train and Tune
3.1. Train and Register Sklearn Style Model
3.2. Register H2O Models
3.3. Register Arbitrary Models
3.4. Hyperparameter Optimization (Model Tune)
4. Post-hoc Explainability
4.1. PFI (Permutation Feature Importance)
4.2. PDP (Partial Dependence Plot)
4.3. Hstats (Friedman’s H-statistic)
4.4. ICE (Individual Conditional Expectation)
4.5. ALE (Accumulated Local Effects)
4.6. LIME (Local Interpretable Model-Agnostic Explanation)
4.7. SHAP (SHapley Additive exPlanations)
5. Interpretable Models
5.1. Generalized Linear Models
5.2. Generalized Additive Model
5.3. Decision Tree
5.4. Fast Interpretable Greedy-tree Sums
5.5. XGBoost Depth 1
5.6. XGBoost Depth 2
5.7. Explainable Boosting Machines
5.8. GAMI-Net
5.9. ReLU Neural Network
6. Diagnostic Suite
6.1. Accuracy
6.2. WeakSpot
6.3. Overfit
6.4. Reliability
6.5. Robustness
6.6. Resilience
6.7. Fairness
6.8. Segmented
6.9. Scored Test
7. Model Comparison
7.1. Comparison for Regression
7.2. Comparison for Classification
7.3. Fairness Comparison
8. Case Studies
8.1. BikeSharing Data
8.2. CaliforniaHousing Data
8.3. TaiwanCredit Data
8.4. Fairness Simulation Study 1
8.5. Fairness Simulation Study 2