Note
Go to the end to download the full example code or to run this example in your browser via Binder
Partial Dependence Plot¶
Experiment initialization and data preparation
from piml import Experiment
from piml.models import XGB2Regressor
exp = Experiment()
exp.data_loader(data="BikeSharing", silent=True)
exp.data_summary(feature_exclude=["yr", "mnth", "temp"], silent=True)
exp.data_prepare(target="cnt", task_type="regression", silent=True)
Train Model
exp.model_train(model=XGB2Regressor(n_estimators=100), name="XGB2")
1D PDP for hr (use training data by default)
exp.model_explain(model="XGB2", show="pdp", uni_feature="hr",
grid_size=50, original_scale=True, figsize=(5, 4))
1D PDP for hr (use test data)
exp.model_explain(model="XGB2", show="pdp", uni_feature="hr", use_test=True,
grid_size=50, original_scale=True, figsize=(5, 4))
1D PDP for season
exp.model_explain(model="XGB2", show="pdp", uni_feature='season',
original_scale=True, figsize=(5, 4))
2D PDP for hr and workingday
exp.model_explain(model="XGB2", show="pdp", bi_features=["hr", "workingday"],
grid_size=10, sample_size=10000, sliced_line=False, original_scale=True, figsize=(5, 4))
Total running time of the script: ( 0 minutes 46.333 seconds)
Estimated memory usage: 15 MB