Note
Go to the end to download the full example code or to run this example in your browser via Binder
Accumulated Local Effects¶
Experiment initialization and data preparation
from piml import Experiment
from piml.models import ReluDNNRegressor
exp = Experiment()
exp.data_loader(data="BikeSharing", silent=True)
exp.data_summary(feature_exclude=["yr", "mnth", "temp"], silent=True)
exp.data_prepare(target="cnt", task_type="regression", silent=True)
Train Model
exp.model_train(model=ReluDNNRegressor(), name="ReLUDNN")
1D ALE Plot for hr
exp.model_explain(model="ReLUDNN", show="ale", uni_feature='hr',
grid_size=50, original_scale=True, figsize=(5, 4))
1D ALE Plot for atemp
exp.model_explain(model="ReLUDNN", show="ale", uni_feature='atemp',
grid_size=50, original_scale=True, figsize=(5, 4))
1D ALE Plot for weathersit
exp.model_explain(model="ReLUDNN", show="ale", uni_feature='weathersit',
original_scale=True, figsize=(5, 4))
2D ALE Plot for hr and atemp
exp.model_explain(model="ReLUDNN", show="ale", bi_features=["hr", "atemp"],
grid_size=10, sliced_line=False, original_scale=True, figsize=(5, 4))
Total running time of the script: ( 1 minutes 6.027 seconds)
Estimated memory usage: 24 MB