Note
Go to the end to download the full example code or to run this example in your browser via Binder
SHapley Additive exPlanations¶
Experiment initialization and data preparation
from piml import Experiment
from piml.models import XGB2Regressor
exp = Experiment()
exp.data_loader(data="BikeSharing", silent=True)
exp.data_summary(feature_exclude=["yr", "mnth", "temp"], silent=True)
exp.data_prepare(target="cnt", task_type="regression", silent=True)
Train Model
exp.model_train(model=XGB2Regressor(), name="XGB2")
SHAP Waterfall plot
exp.model_explain(model="XGB2", show="shap_waterfall", sample_id=0, figsize=(5, 4))
SHAP feature importance
exp.model_explain(model="XGB2", show="shap_fi", sample_size=100, figsize=(5, 4))
SHAP summary plot
exp.model_explain(model="XGB2", show="shap_summary", sample_size=100, figsize=(5, 4))
SHAP scatter plot
exp.model_explain(model="XGB2", show="shap_scatter", uni_feature="hr",
sample_size=100, figsize=(5, 4))
Total running time of the script: ( 0 minutes 43.691 seconds)
Estimated memory usage: 33 MB