piml.models.XGB2Classifier

class piml.models.XGB2Classifier(n_estimators=100, eta=0.3, max_depth=2, tree_method='auto', max_bin=256, reg_lambda=0, reg_alpha=0, gamma=0, feature_names=None, feature_types=None, mono_increasing_list=(), mono_decreasing_list=(), random_state=0)

Depth-2 XGBoostClassifier.

Parameters:
n_estimatorsint, default=100

Number of gradient boosted trees.

etafloat, default=0.3

Boosting learning rate.

max_depth: int, default=2

Max tree depth

tree_method{“exact”, “hist”, “approx”, “gpu_hist”, “auto”}, default=”auto”

Specify which tree method to use.

max_binint, default=20

If using histogram-based algorithm, maximum number of bins per feature.

reg_alphafloat, default=0

L1 regularization term on weights.

reg_lambdafloat, default=0

L2 regularization term on weights.

gammafloat, default=0

Minimum loss reduction required to make a further partition on a leaf node of the tree.

feature_nameslist or None, default=None

The list of feature names.

feature_typeslist or None, default=None

The list of feature types. Available types include “numerical” and “categorical”.

mono_increasing_listtuple of str, default=()

The feature name tuple subject to monotonic increasing constraint.

mono_decreasing_listtuple of str, default=()

The feature name tuple subject to monotonic decreasing constraint.

random_stateint, default=0

The random seed.

Attributes:
n_features_in_int

The number of input features.

is_fitted_bool

Indicator of whether the model is fitted.

feature_names_list of str

The feature name list of all input features.

feature_types_list of str

The feature type list of all input features.

xgb_params_dict

The parameter dict of XGB model.

Methods

decision_function(X)

Returns numpy array of raw predicted value before softmax.

fit(X, y[, sample_weight])

Fit the model.

get_metadata_routing()

Get metadata routing of this object.

get_params([deep])

Get parameters for this estimator.

parse_model()

Interpret the model using functional ANOVA.

partial_dependence(fidx, X)

Partial dependence of given effect index.

predict(X)

Returns numpy array of predicted class.

predict_proba(X)

Returns numpy array of predicted probabilities of each class.

score(X, y[, sample_weight])

Return the mean accuracy on the given test data and labels.

set_params(**params)

Set the parameters of this estimator.

set_score_request(*[, sample_weight])

Request metadata passed to the score method.

decision_function(X)

Returns numpy array of raw predicted value before softmax.

Parameters:
Xnp.ndarray of shape (n_samples, n_features)

Data features.

Returns:
prednp.ndarray of shape (n_samples, )

numpy array of predicted logit.

fit(X, y, sample_weight=None)

Fit the model.

Parameters:
Xnp.ndarray of shape (n_samples, n_features)

Data features.

ynp.ndarray of shape (n_samples, )

Target response.

sample_weightnp.ndarray of shape (n_samples, )

Sample weight.

Returns:
selfobject

Fitted Estimator.

get_metadata_routing()

Get metadata routing of this object.

Please check User Guide on how the routing mechanism works.

Returns:
routingMetadataRequest

A MetadataRequest encapsulating routing information.

get_params(deep=True)

Get parameters for this estimator.

Parameters:
deepbool, default=True

If True, will return the parameters for this estimator and contained subobjects that are estimators.

Returns:
paramsdict

Parameter names mapped to their values.

parse_model()

Interpret the model using functional ANOVA.

Returns:
An instance of FANOVAInterpreter

The interpretation results.

partial_dependence(fidx, X)

Partial dependence of given effect index.

Parameters:
fidxtuple of int

The main effect or pairwise interaction feature index.

Xnp.ndarray of shape (n_samples, n_features)

Data features.

Returns:
prednp.ndarray of shape (n_samples, )

numpy array of predicted class values.

predict(X)

Returns numpy array of predicted class.

Parameters:
Xnp.ndarray of shape (n_samples, n_features)

Data features

Returns:
prednp.ndarray of shape (n_samples, )

numpy array of predicted class values.

predict_proba(X)

Returns numpy array of predicted probabilities of each class.

Parameters:
Xnp.ndarray of shape (n_samples, n_features)

Data features.

Returns:
pred_probanp.ndarray of shape (n_samples, 2)

numpy array of predicted proba values.

score(X, y, sample_weight=None)

Return the mean accuracy on the given test data and labels.

In multi-label classification, this is the subset accuracy which is a harsh metric since you require for each sample that each label set be correctly predicted.

Parameters:
Xarray-like of shape (n_samples, n_features)

Test samples.

yarray-like of shape (n_samples,) or (n_samples, n_outputs)

True labels for X.

sample_weightarray-like of shape (n_samples,), default=None

Sample weights.

Returns:
scorefloat

Mean accuracy of self.predict(X) w.r.t. y.

set_params(**params)

Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as Pipeline). The latter have parameters of the form <component>__<parameter> so that it’s possible to update each component of a nested object.

Parameters:
**paramsdict

Estimator parameters.

Returns:
selfestimator instance

Estimator instance.

set_score_request(*, sample_weight: Union[bool, None, str] = '$UNCHANGED$') XGB2Classifier

Request metadata passed to the score method.

Note that this method is only relevant if enable_metadata_routing=True (see sklearn.set_config). Please see User Guide on how the routing mechanism works.

The options for each parameter are:

  • True: metadata is requested, and passed to score if provided. The request is ignored if metadata is not provided.

  • False: metadata is not requested and the meta-estimator will not pass it to score.

  • None: metadata is not requested, and the meta-estimator will raise an error if the user provides it.

  • str: metadata should be passed to the meta-estimator with this given alias instead of the original name.

The default (sklearn.utils.metadata_routing.UNCHANGED) retains the existing request. This allows you to change the request for some parameters and not others.

New in version 1.3.

Note

This method is only relevant if this estimator is used as a sub-estimator of a meta-estimator, e.g. used inside a Pipeline. Otherwise it has no effect.

Parameters:
sample_weightstr, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED

Metadata routing for sample_weight parameter in score.

Returns:
selfobject

The updated object.

Examples using piml.models.XGB2Classifier

Build Robust Models with Monotonicity Constraints

Build Robust Models with Monotonicity Constraints