piml.scored_test
.test_accuracy_plot¶
- piml.scored_test.test_accuracy_plot(x, y, prediction, prediction_proba=None, feature_names=None, feature_types=None, target_name=None, train_idx=None, test_idx=None, task_type=None, random_state=None, figsize=None)¶
Plot confusion matrix, ROC and Recall-Precision, only supports classifiers.
- Parameters:
- xndarray of shape (n_samples, n_features), default=None
The covariate data.
- yndarray of shape (n_samples, ), default=None
The actual response.
- predicitonndarray of shape (n_samples, ), default=None
The model prediction for regression tasks and predicted class for binary classification tasks.
- prediciton_probandarray of shape (n_samples, ), default=None
The predicted probability of the positive class in binary classificaiton tasks. Not need for regression tasks.
- task_type{‘regression’, ‘classification’}, default=None
The task type.
- feature_nameslist, default=None
Feature names.
- feature_types: list, default=None
Feature types, can be ‘numerical’ or ‘categorical’.
- target_namestr, default=None
Target name.
- train_idxarray-like of shape (n_samples_train,), default=None
If train_idx and test_idx are not None, it will be ignored.
- test_idxarray-like of shape (n_samples_test,), default=None
If train_idx and test_idx are not None, it will be ignored.
- random_stateint, default=None
Random seed for train / test split. If None, it will be 0.
- figsizetuple, default=None
Figure size of the plot. If None, it will be (8, 6).