Note
Go to the end to download the full example code or to run this example in your browser via Binder
Accuracy: Classification¶
Experiment initialization and data preparation
from piml import Experiment
from piml.models import XGB2Classifier
exp = Experiment()
exp.data_loader(data="TaiwanCredit", silent=True)
exp.data_summary(feature_exclude=["LIMIT_BAL", "SEX", "EDUCATION", "MARRIAGE", "AGE"], silent=True)
exp.data_prepare(target="FlagDefault", task_type="classification", silent=True)
Train Model
exp.model_train(XGB2Classifier(), name="XGB2")
Accuracy table
exp.model_diagnose(model="XGB2", show="accuracy_table")
ACC AUC F1 LogLoss Brier
Train 0.8219 0.7978 0.4759 0.4196 0.1316
Test 0.8290 0.7728 0.4797 0.4252 0.1319
Gap 0.0071 -0.0251 0.0038 0.0057 0.0004
Plot confusion matrix, ROC and Recall-Precision
exp.model_diagnose(model="XGB2", show="accuracy_plot", figsize=(10, 4))
Plot residual with respect to the feature PAY_1
exp.model_diagnose(model="XGB2", show="accuracy_residual", show_feature="PAY_1",
use_test=False, original_scale=True, figsize=(5, 4))
Plot residual with respect to the target feature
exp.model_diagnose(model="XGB2", show="accuracy_residual", show_feature="FlagDefault",
use_test=False, figsize=(5, 4))
Plot residual with respect to the predicted response
exp.model_diagnose(model="XGB2", show="accuracy_residual", show_feature="FlagDefault_predict",
use_test=False, figsize=(5, 4))
Total running time of the script: ( 0 minutes 46.487 seconds)
Estimated memory usage: 54 MB