piml.models
.XGB1Classifier¶
- class piml.models.XGB1Classifier(n_estimators=100, eta=0.3, refit_method='glm', tree_method='auto', max_bin=256, reg_lambda=1, reg_alpha=0, gamma=0, feature_names=None, feature_types=None, min_bin_size=0.01, max_bin_size=1.0, mono_increasing_list=(), mono_decreasing_list=(), random_state=0)¶
Depth-1 XGBoostClassifier with optimal binning.
- Parameters:
- n_estimatorsint, default=100
Number of gradient boosted trees.
- etafloat, default=0.3
Boosting learning rate.
- refit_method{“glm”, “xgb”}, default=”glm”
The method for refit the overall model using the optimized bins.
- tree_method{“exact”, “hist”, “approx”, “gpu_hist”, “auto”}, default=”auto”
Specify which tree method to use.
- max_binint, default=20
If using histogram-based algorithm, maximum number of bins per feature.
- reg_alphafloat, default=0
L1 regularization term on weights.
- reg_lambdafloat, default=0
L2 regularization term on weights.
- gammafloat, default=0
Minimum loss reduction required to make a further partition on a leaf node of the tree.
- feature_nameslist or None, default=None
The list of feature names.
- feature_typeslist or None, default=None
The list of feature types. Available types include “numerical” and “categorical”.
- min_bin_sizefloat, default=0.01
The fraction of minimum number of records for each bin.
- max_bin_sizefloat, default=1.0
The fraction of maximum number of records for each bin.
- mono_increasing_listtuple of str, default=()
The feature name tuple subject to monotonic increasing constraint.
- mono_decreasing_listtuple of str, default=()
The feature name tuple subject to monotonic decreasing constraint.
- random_stateint, default=0
The random seed.
- Attributes:
- n_features_in_int
The number of input features.
- is_fitted_bool
Indicator of whether the model is fitted.
- feature_names_list of str
The feature name list of all input features.
- feature_types_list of str
The feature type list of all input features.
- min_value_np.ndarray of shape (n_features, )
The min values of input features (obtained from training data).
- max_value_np.ndarray of shape (n_features, )
The max values of input features (obtained from training data).
- split_info_: dict
The split points per feature.
- n_splits_raw_int
The total number of splits in the raw XGB model.
- n_splits_int
The total number of splits.
- xgb_params_dict
The parameter dict of XGB model.
- effects_: dict
The main effects of the final functional ANOVA model.
- intercept_int
The overall intercept of the final functional ANOVA model.
Methods
Returns numpy array of raw predictions.
fit
(X, y[, sample_weight])Fit the model.
Get metadata routing of this object.
get_params
([deep])Get parameters for this estimator.
Returns numpy array of raw predictions.
Interpret the model using functional ANOVA.
partial_dependence
(fidx, X)Partial dependence of given effect index.
predict
(X)Returns numpy array of predicted class.
Returns numpy array of predicted probabilities of each class.
score
(X, y[, sample_weight])Return the mean accuracy on the given test data and labels.
set_params
(**params)Set the parameters of this estimator.
set_score_request
(*[, sample_weight])Request metadata passed to the
score
method.- decision_function(X)¶
Returns numpy array of raw predictions.
- Parameters:
- Xnp.ndarray of shape (n_samples, n_features)
Data features.
- Returns:
- predictionsnp.ndarray of shape (n_samples, )
numpy array of raw predictions.
- fit(X, y, sample_weight=None)¶
Fit the model.
- Parameters:
- Xnp.ndarray of shape (n_samples, n_features)
Data features.
- ynp.ndarray of shape (n_samples, )
Target response.
- sample_weightnp.ndarray of shape (n_samples, )
Sample weight.
- Returns:
- selfobject
Fitted Estimator.
- get_metadata_routing()¶
Get metadata routing of this object.
Please check User Guide on how the routing mechanism works.
- Returns:
- routingMetadataRequest
A
MetadataRequest
encapsulating routing information.
- get_params(deep=True)¶
Get parameters for this estimator.
- Parameters:
- deepbool, default=True
If True, will return the parameters for this estimator and contained subobjects that are estimators.
- Returns:
- paramsdict
Parameter names mapped to their values.
- get_raw_output(X)¶
Returns numpy array of raw predictions.
- Parameters:
- Xnp.ndarray of shape (n_samples, n_features)
Data features.
- Returns:
- prednp.ndarray of shape (n_samples, )
numpy array of raw predictions.
- parse_model()¶
Interpret the model using functional ANOVA.
- Returns:
- An instance of FANOVAInterpreter
The interpretation results.
- partial_dependence(fidx, X)¶
Partial dependence of given effect index.
- Parameters:
- fidxtuple of int
The main effect feature index.
- Xnp.ndarray of shape (n_samples, n_features)
Data features.
- Returns:
- prednp.ndarray of shape (n_samples, )
numpy array of predicted class values.
- predict(X)¶
Returns numpy array of predicted class.
- Parameters:
- Xnp.ndarray of shape (n_samples, n_features)
Data features
- Returns:
- prednp.ndarray of shape (n_samples, )
numpy array of predicted class values.
- predict_proba(X)¶
Returns numpy array of predicted probabilities of each class.
- Parameters:
- Xnp.ndarray of shape (n_samples, n_features)
Data features.
- Returns:
- pred_probanp.ndarray of shape (n_samples, 2)
numpy array of predicted proba values.
- score(X, y, sample_weight=None)¶
Return the mean accuracy on the given test data and labels.
In multi-label classification, this is the subset accuracy which is a harsh metric since you require for each sample that each label set be correctly predicted.
- Parameters:
- Xarray-like of shape (n_samples, n_features)
Test samples.
- yarray-like of shape (n_samples,) or (n_samples, n_outputs)
True labels for
X
.- sample_weightarray-like of shape (n_samples,), default=None
Sample weights.
- Returns:
- scorefloat
Mean accuracy of
self.predict(X)
w.r.t.y
.
- set_params(**params)¶
Set the parameters of this estimator.
The method works on simple estimators as well as on nested objects (such as
Pipeline
). The latter have parameters of the form<component>__<parameter>
so that it’s possible to update each component of a nested object.- Parameters:
- **paramsdict
Estimator parameters.
- Returns:
- selfestimator instance
Estimator instance.
- set_score_request(*, sample_weight: Union[bool, None, str] = '$UNCHANGED$') XGB1Classifier ¶
Request metadata passed to the
score
method.Note that this method is only relevant if
enable_metadata_routing=True
(seesklearn.set_config
). Please see User Guide on how the routing mechanism works.The options for each parameter are:
True
: metadata is requested, and passed toscore
if provided. The request is ignored if metadata is not provided.False
: metadata is not requested and the meta-estimator will not pass it toscore
.None
: metadata is not requested, and the meta-estimator will raise an error if the user provides it.str
: metadata should be passed to the meta-estimator with this given alias instead of the original name.
The default (
sklearn.utils.metadata_routing.UNCHANGED
) retains the existing request. This allows you to change the request for some parameters and not others.New in version 1.3.
Note
This method is only relevant if this estimator is used as a sub-estimator of a meta-estimator, e.g. used inside a
Pipeline
. Otherwise it has no effect.- Parameters:
- sample_weightstr, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED
Metadata routing for
sample_weight
parameter inscore
.
- Returns:
- selfobject
The updated object.
Examples using piml.models.XGB1Classifier
¶
XGB-1 Classification (CoCircles)