logo
  • Install
  • User Guide
  • API
  • Examples
logo
  • User Guide
    • 1. Introduction
    • 2. Data Pipeline
    • 3. Model Train and Tune
    • 4. Post-hoc Explainability
    • 5. Interpretable Models
    • 6. Diagnostic Suite
    • 7. Model Comparison
    • 8. Case Studies
      • 8.1. BikeSharing Data
      • 8.2. CaliforniaHousing Data
      • 8.3. TaiwanCredit Data
      • 8.4. Fairness Simulation Study 1
      • 8.5. Fairness Simulation Study 2

8. Case Studies¶

This chapter includes multiple examples of PiML low-code experimentation.

  • 8.1. BikeSharing Data
    • 8.1.1. Load and Prepare Data
    • 8.1.2. Train Intepretable Models
    • 8.1.3. Interpretability and Explainability
    • 8.1.4. Model Diagnostics and Outcome Testing
    • 8.1.5. Model Comparison and Benchmarking
  • 8.2. CaliforniaHousing Data
    • 8.2.1. Load and Prepare Data
    • 8.2.2. Train Intepretable Models
    • 8.2.3. Interpretability and Explainability
    • 8.2.4. Model Diagnostics and Outcome Testing
    • 8.2.5. Model Comparison and Benchmarking
  • 8.3. TaiwanCredit Data
    • 8.3.1. Load and Prepare Data
    • 8.3.2. Train Intepretable Models
    • 8.3.3. Interpretability and Explainability
    • 8.3.4. Model Diagnostics and Outcome Testing
    • 8.3.5. Model Comparison and Benchmarking
  • 8.4. Fairness Simulation Study 1
    • 8.4.1. Load and Prepare Data
    • 8.4.2. Train ML Model(s)
    • 8.4.3. Fairness Testing
  • 8.5. Fairness Simulation Study 2
    • 8.5.1. Data Description
    • 8.5.2. Load and Prepare data
    • 8.5.3. Train ML Model(s)
    • 8.5.4. Fairness Testing
    • 8.5.5. Fairness Testing Comparison
© Copyright 2022-, PiML-Toolbox authors. Show this page source