Install
User Guide
API
Examples
Toggle Menu
User Guide
1. Introduction
2. Data Pipeline
3. Model Train and Tune
4. Post-hoc Explainability
5. Interpretable Models
6. Diagnostic Suite
7. Model Comparison
8. Case Studies
8.1. BikeSharing Data
8.2. CaliforniaHousing Data
8.3. TaiwanCredit Data
8.4. Fairness Simulation Study 1
8.5. Fairness Simulation Study 2
8.
Case Studies
¶
This chapter includes multiple examples of PiML low-code experimentation.
8.1. BikeSharing Data
8.1.1. Load and Prepare Data
8.1.2. Train Intepretable Models
8.1.3. Interpretability and Explainability
8.1.4. Model Diagnostics and Outcome Testing
8.1.5. Model Comparison and Benchmarking
8.2. CaliforniaHousing Data
8.2.1. Load and Prepare Data
8.2.2. Train Intepretable Models
8.2.3. Interpretability and Explainability
8.2.4. Model Diagnostics and Outcome Testing
8.2.5. Model Comparison and Benchmarking
8.3. TaiwanCredit Data
8.3.1. Load and Prepare Data
8.3.2. Train Intepretable Models
8.3.3. Interpretability and Explainability
8.3.4. Model Diagnostics and Outcome Testing
8.3.5. Model Comparison and Benchmarking
8.4. Fairness Simulation Study 1
8.4.1. Load and Prepare Data
8.4.2. Train ML Model(s)
8.4.3. Fairness Testing
8.5. Fairness Simulation Study 2
8.5.1. Data Description
8.5.2. Load and Prepare data
8.5.3. Train ML Model(s)
8.5.4. Fairness Testing
8.5.5. Fairness Testing Comparison