Install
User Guide
API
Examples
Toggle Menu
User Guide
1. Introduction
2. Data Pipeline
3. Model Train and Tune
4. Post-hoc Explainability
5. Interpretable Models
5.1. Generalized Linear Models
5.2. Generalized Additive Model
5.3. Decision Tree
5.4. Fast Interpretable Greedy-tree Sums
5.5. XGBoost Depth 1
5.6. XGBoost Depth 2
5.7. Explainable Boosting Machines
5.8. GAMI-Net
5.9. ReLU Neural Network
6. Diagnostic Suite
7. Model Comparison
8. Case Studies
5.
Interpretable Models
¶
5.1. Generalized Linear Models
5.1.1. Model Training
5.1.2. Global Interpretation
5.1.3. Local Interpretation
5.1.4. Data Dependent Interpretation
5.1.5. Examples
5.2. Generalized Additive Model
5.2.1. Model Training
5.2.2. Global Interpretation
5.2.3. Local Interpretation
5.2.4. Example
5.3. Decision Tree
5.3.1. Model Training
5.3.2. Global Interpretation
5.3.3. Local Interpretation
5.3.4. Examples
5.4. Fast Interpretable Greedy-tree Sums
5.4.1. Model Training
5.4.2. Global Interpretation
5.4.3. Local Interpretation
5.4.4. Examples
5.5. XGBoost Depth 1
5.5.1. Model Training
5.5.2. Global Interpretation
5.5.3. Local Interpretation
5.5.4. Examples
5.6. XGBoost Depth 2
5.6.1. Model Training
5.6.2. Global Interpretation
5.6.3. Local Interpretation
5.6.4. Examples
5.7. Explainable Boosting Machines
5.7.1. Model Training
5.7.2. Global Interpretation
5.7.3. Local Interpretation
5.7.4. Examples
5.8. GAMI-Net
5.8.1. Model Training
5.8.2. Global Interpretation
5.8.3. Local Interpretation
5.8.4. Examples
5.9. ReLU Neural Network
5.9.1. Model Formulation
5.9.2. Local Linear Models
5.9.3. Model Training
5.9.4. Global Interpretation
5.9.5. Local Interpretation
5.9.6. Examples